III SEMINÁRIO DE INICIAÇÃO CIENTÍFICA DA UNIFESSPA

14 E 15 DE SETEMBRO

ESTUDO DA FORMAÇÃO DE FASE VÍTREA SOBRE A RESISTÊNCIA AO CHOQUE TÉRMICO EM REFRATÁRIOS DE ALTA ALUMINA

Elton Douglas Heriger Pereira; Thales Lima da Silva; Adriano Alves Rabelo

Agência financiadora: CNPq

1. INTRODUÇÃO

PROPIT/UNIFESSPA

No decorrer dos últimos anos, números mostram que o consumo de refratários na indústria siderúrgica tem caído drasticamente, porém, isto prova que a indústria de refratários tem se ajustado a nova realidade do setor siderúrgico, onde estes tem como sua principal função atender as exigências inerentes à produção e refino de aço, além da redução de custos, durabilidade ao ataque de escória, elevada resistência mecânica em altas temperaturas, boa resistência às variações bruscas de temperatura sem se romper e obtenção de produtos de elevada qualidade.^[1]

A partir de tal contexto, refratários de alta alumina, Al_2O_3 -Zr O_2 e Al_2O_3 -Zr O_2 -mulita vem se destacando principalmente em revestimentos de panelas de refino e válvulas-gaveta de distribuição devido às excelentes propriedades de resistência à corrosão por escórias básicas, choque térmico, propriedades mecânicas à altas temperaturas e durabilidade frente as solicitações operacionais.

O intuito deste trabalho é verificar a influência da introdução de Nb₂O₅ nas propriedades tecnológicas dos refratários e juntamente com a formação de fase vítra, tal formação é importante já que abre à possibilidade de ganho na resistência mecânica devido à formação de fase vítrea acarretando em uma maior densificação do mesmo, além de que a condutividade térmica na fase vítrea formada é maior acarretando também em uma maior resistência ao choque térmico.

2. MATERIAIS E MÉTODOS

A metodologia empregada consiste seguinte rota convencional de processamento: moagem, secagem, prensagem, calcinação e sinterização. Na confecção dos corpos de prova foram confeccionados nas dimensões de 60x20x20 mm utilizando prensagem uniaxial de 61,3 MPa com lubrificante em prensagem uniaxial em dois estágios para evitar empenamento durante a sinterização, na preparação das amostras os corpos de prova foram calcinados 300°C/2,0 h com taxa de aquecimento de 1 °C/min, sinterizados a 1400 e 1600 °C por 5 h. A Tabela 01 expressa as formulações estabelecidas para o desenvolvimento desse trabalho. O ensaio de resistência ao choque térmico foi conduzido em forno mufla aquecendo até 800 °C introduzindo então 16 amostras e mantendo-as por 15 minutos no patamar, seguido de resfriamento brusco em água corrente a temperatura ambiente, verificando-se o surgimento de trinca após 5, 10 e 15 ciclos térmicos e medido a resistência à flexão inicial e após o último ciclo.

Componente	F1(%p.)	F2(%p.)	F3(%p.)	F4(%p.)
Alumina APC-G	45,0	44,1	43,2	42,3
Alumina calcinada	7,5	7,35	7,2	7,05
Alumina eletrofundida	15,0	14,7	14,4	14,1
Alumina reativa	7,5	7,35	7,2	7,05
Agregado de mulita	20,0	20,0	20,0	20,0
Zircônia TZ8Y	5,0	5,0	5,0	5,0
Nióbia	0,0	1,5	3,0	4,5

Tabela 01: Formulações utilizadas para confecção dos refratários

Fonte: autor.

3. RESULTADOS E DISCUSSÃO

As propriedades tecnológicas de Absorção de Água (AA), Porosidade Aparente (PA) e Densidade Aparente (DA) e retração linear de queima (RLq) estão apresentados na Tabela 2. Considerou-se a média de duas amostras submetidas à sinterização nas diferentes temperaturas.

Temperatura	Formulação	AA (%)	PA (%)	$DA (g/cm^3)$	RLq (%)
	F1	$11,9 \pm 0,1$	$30,7 \pm 0,2$	$2,9 \pm 0,8$	$0,7 \pm 0,2$
1400 °C	F2	$9,6 \pm 0,1$	$25,7\pm0,8$	$2,9 \pm 0,5$	$1,7 \pm 0,1$
	F3	$6,2 \pm 0,7$	$17,9 \pm 1,4$	$3,1 \pm 0,3$	$1,8 \pm 0,1$
	F4	$6,2 \pm 1,3$	$17,5 \pm 2,0$	$3,0 \pm 0,3$	$5{,}6\pm0{,}1$
1600 °C	F1	6,3 ± 0,1	19,0 ± 2,0	3,2 ± 0,6	5,4 ± 0,1
	F2	$8,6 \pm 1,7$	$24,2 \pm 2,2$	$3,1 \pm 0,7$	5.9 ± 0.1
	F3	$1,6\pm0,40$	$5,4 \pm 1,2$	$3,4 \pm 0,1$	6,3 ± 0,05
	F4	$2,9 \pm 0,2$	$9,0 \pm 0,1$	$3,6 \pm 0,1$	$5,6 \pm 0,4$

Tabela 02: Resultados das propriedades tecnológicas das amostras.

Fonte: autor.

As composições F3 e F4 a 1400 °C/5h, apresentaram reduzidos valores de absorção de água e de porosidade aparente, quando comparados com os resultados com os da formulação F1 que não possui adição de Nb₂O₅, indicando que teores acima de 3,0% p favorecem a densificação dos corpos de prova. Pelo diagrama binário Al₂O₃-Nb₂O₅ a temperatura eutética é de 1250 \pm 10 °C. ^[5]

A 1600 °C/5h é notável a diferença de densidades, uma vez que a fase vítrea é mais efetiva em reduzir porosidade aparente e absorção de água. Nota-se que houve um aumento na absorção de água e porosidade aparente da formulação F4 em relação a F3. Essa anomalia pode ser explicada provavelmente pelo excesso de Nb₂O₅ durante a sinterização levar a formação de fase vapor, não contribuindo para a densificação. ^[4] A composição F3 a 1600 °C/5h apresentou a menor porosidade (5,4%), um resultado mais interessante para a aplicação do refratário em siderurgia. Deve-se ressaltar que são poros considerados pequenos e bem distribuídos na microestrutura, o que favorece o isolamento térmico e diminui o ataque químico, que levam a corrosão, quando há penetração de gases, escórias, metal líquido e a erosão. Portanto, este tipo de refratário apropriado para revestimento panelas e distribuídores siderúrgicos usados na Aciária.^[1]

Quanto a resistência ao choque térmico, os 2 corpos de prova de cada formulação e temperatura de sinterização não apresentaram falha catastrófica, assim como a presença de trincas a olho nu durante as ciclagens térmicas. É importante lembrar que a alumina é reconhecida por sua baixa resistência ao choque térmico, devido a isso a incorporação da adição de Nb₂O₅ formando fase vítrea aumenta a condutividade térmica e assim melhora propriedades de resistência ao choque térmico. ^[2]

Na Figura 01 nota-se que os valores de resistência após o choque térmico não diferem muito em relação aos sem ciclagem térmica, demonstrando que as diferentes formulações apresentaram bom desempenho frente ao choque térmico. Percebe-se que os valores do módulo de ruptura à flexão foram maiores nos corpos de prova sinterizados a 1600 °C.

Figura 01. Resultados de módulo de ruptura à flexão sem choque térmico e após 15 ciclos de choque térmico com gradientes térmicos de 800 °C das amostras sinterizadas: (a) 1600 °C/5h e (b) a 1400 °C/5h.

Alguns valores de do módulo de ruptura a flexão foram mais altos mesmo nos corpos de prova que passaram pela ciclagem térmica, e isso pode ser associado à grande dispersão, que está associado tanto a quantidade de defeitos, como ao próprio processo que o ensaio foi executado, assim, conclui-se que para uma melhor validação dos resultados é sugerido que mais corpos de prova sejam ensaiados além de um tratamento estatístico de Weibull.

Figura 02. Micrografias dos refratários sinterizados a 1600 °C/5h: (a) sem adição de nióbia e (b) F2 - 1,5%p., (c) F3 - 3,0%p., (d) F4 - 4,5%p. de Nb₂O₅.

Na Figura 2, (a) e (b), nota-se uma microestrutura com uma dispersão de zircônia bastante homogênea nos pontos triplos dos grãos, onde a zircônia atua como um reforço na matriz de alumina, aumentando assim sua tenacidade à fratura. Na imagem (b) com 1,5% p. de Nb₂O₅ não houve formação de fase vítrea a partir da adição de Nb₂O₅ com uma microestrutra bastante parecida da imagem (a), nota-se uma distribuição de grãos grandes de alumina calcinada e grãos pequenos e esféricos de alumina reativa. Nas imagens (c) e (d) com maior percentual de Nb₂O₅ (3,0 e 4,5% p.) houve formação de fase vítrea confirmada por EDS, que segregou nos contornos de grãos da alumina. Na Figura (c) é possível ver que a fase vítrea envolveu principalmente os grãos de alumina reativa e calcinada. Percebe-se que houve crescimento anormal de grãos de alumina calcinada, para maiores teores do teor de Nb₂O₅, com ganho de densificação em temperaturas mais elevadas, com boa dispersão das partículas de zircônia sobre o grão eletrofundido de mulita.

Figura 03. Micrografias da amostra F4 (4,5%p. Nb₂O₅) sinterizada a (a) 1600 °C/5h e (b) 1400 °C/5h.

Na Figura 3, observa-se que a temperatura de sinterização foi determinante na microestrutura obtida. Em (a) pode-se observar uma grande formação de fase líquida que segregou nos contornos de grão dos grãos de $Al_2O_3^{[4]}$ e em alguns casos proporcionando crescimento anormal de grão,^[3] como mostrado anteriormente. Em (b) nota-se uma leve formação de fase vítrea e que em (b) os poros abertos de maiores dimensões. Este fato está associado a formação de maior quantidade de fase líquida durante a sinterização maior na imagem apresentada na Figura 03 (a) do que em (b).

4. CONSIDERAÇÕES FINAIS

A formação de fase vítrea foi mais apreciável nas formulações com maior teor de Nb₂O₅ F3 e F4 e sinterização de1600 °C/5h, porém em F4 temos uma menor formação de fase vítrea que em F3, devido a formação de fase vapor de Nb₂O₅, acarretando em aumento da AA e da PA quando comparado com F3. Conclui-se que os agregados eletrofundidos de Mulita com a fase vítrea formada, teve um papel determinante na propriedade de resistência ao choque térmico, uma vez que a fase mulita tem uma melhor resistência frente ao choque térmico que a fase matriz de alumina. A granulometria grosseira dos agregados de mulita resultou em microtrincamento na matriz devido às diferenças de expansão térmica, contribuindo para a dissipação de energia de propagação de trincas, enquanto a fase vítrea aumenta a condutividade térmica equalizando as tensões térmicas do refratário e, consequentemente, estes efeitos contribuem na resistência ao choque térmico. Destaca-se a formulação F3 que obteve os melhores resultados de propriedades tecnológicas, assim como de resistência a flexão e uma boa resistência frente ao choque térmico sem sofrer muito dano.

REFERÊNCIAS

[1] LEITE, F. C., LUZ, A. P., PANDOLFELLI, V.C. Características e mecanismos de desgaste dos refratários MgO-C usados na linha de escória de panelas de aço. Cerâmica, v. 60, p. 348-365, 2014.

[2] ACCHAR, W. **Produção de Alumina Sinterizada com Adições de Nióbia**. Dissertação (Mestrado em Ciência dos Materiais) – Instituto Militar de Engenharia, Exército Brasileiro, Ministério da Defesa, Rio de Janeiro, 143 f., 1985.

[3] HASSAN, A. M., AWAAD, M., BONDIOLI, F., NAGA, S. M. Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics. Journal of Ceramic Science and Technology, v. 5, p. 51–56, 2014.

[4] HSU, Y., WANG, S., WANG, Y., CHEN, S. Effect of niobium doping on the densification and grain growth in alumina. Ceramics International, v. 34, p. 1183–1187, 2008.

ROTH, R., NEGAS, T., COOK, L. **Phase Diagrams for Ceramists.** The American Ceramic Society, Columbus, OH, v. 4, p. 117, 1981.